Appendix: Scaling Bayesian Network Parameter Learning with MapReduce and Age-Layered Expectation Maximization

Erik B. Reed Carnegie Mellon University NASA Research Park Moffett Field, CA 94035 erikreed@cmu.edu Ole J. Mengshoel Carnegie Mellon University NASA Research Park Moffett Field, CA 94035 ole.mengshoel@sv.cmu.edu

1 Age Layered Expectation Maximization (ALEM) for Bayesian Network Parameter Learning

Consider a Bayesian Network (BN) (X, W, θ) , where X are the nodes, W are the edges, and θ are the parameters/CPTs. Let $E \subset X$ be the evidence nodes, and e the evidence. A BN factorizes a joint distribution Pr(X), and allows for different probabilistic queries to be formulated and supported by efficient algorithms; they all assume that all nodes in E are clamped to values e. Computation of most probable explanation (MPE) amounts to finding a most probable explanation over the remaining nodes R = X - E, or MPE(e). Computation of marginals (or beliefs) amounts to inferring the posterior probabilities over one or more query nodes $Q \subseteq R$, specifically BEL(Q, e) where $Q \in Q$. Marginals may be used directly or used to compute most likely values (MLVs) simply by picking, in BEL(Q, e), a most likely state.

The Expectation Maximization (EM) algorithm can be summarized as follows:

- 1. Initialize parameters $\theta^{(0)}$
- 2. E-step: Using parameters $\theta^{(t)}$ and E, generate the likelihood $\ell^{(t)}$ for the hidden nodes R.
- 3. M-step: Modify the parameters to $\theta^{(t+1)}$ to maximize the data likelihood.
- 4. While $|\ell^{(t)} \ell^{(t-1)}| > \epsilon$, where ϵ is the tolerance, go to 2.

To formalize ALEM: let L be a set of k layers $L = \{L_1, L_2, ..., L_k\}$, where L_i is a set of EM runs, where each layer has $R_j = [0, k]$ EM runs, $\sum_j R_j = k$. L_{ij} denotes jth EM run in layer i. Each layer L_i has an age limit $\beta_i \in \mathbb{N}$, which determines the maximum number of iterations. When an EM run L_{ij} reaches the maximum number of iterations, it ascends to the next layer. That is, L_{ij} is removed from L_i and put in L_{i+1} . The number of iterations of an EM run L_{ij} is denoted $\eta(L_{ij})$ parameter (log) likelihood of is denoted by $\ell(L_{ij})$. Consequently, $\beta_i \ge \eta(L_{ij})$ for $\forall i \forall j$. β is assigned to be an exponential function $\beta_i = \alpha 2^{i-1}$ for $\forall i \in [1, k-1]$, where α is the Age Gap, a constant influencing the maximum number of iterations between layers, or age difference. The max number of iterations in standard EM.

Each layer L_i also has a maximum number of runs $M_i \in \mathbb{N}$ for $\forall i \in [1, k]$. The maximum runs of the lowest layer M_1 is the initial population when ALEM initializes. When EM runs reach the maximum number of iterations for their layer β_i , they move to layer L_{i+1} , which can result in competition if their are more than M_{i+1} EM runs in L_{i+1} . When this occurs, the best likelihoods remain: the EM run with the lowest likelihood is removed from L_{i+1} . This has been termed as ALEM culling. That is:

$$L_{i+1} = \{L_{i+1} - L_{i+1,\arg\min_{i}\ell(L_{i+1,j})}\}$$

With the introduction of ω , we note there are three ways in which an EM run L_{ij} can terminate in ALEM:

- 1. L_{ij} reaches the maximum number of iterations ω i.e. $\eta(L_{ij}) = \omega$
- 2. The likelihood of L_{ij} has changed by an amount less than ϵ from the previous iteration. i.e. $|\ell^{(t)}(L_{ij}) \ell^{(t-1)}(L_{ij})| \leq \epsilon$
- 3. ALEM culling: if $||L_i|| > M_i$ and $L_{ij} = L_{i,\arg\min_j \ell(L_{i+1,j})}$